An inequality for generalized complete elliptic integral
نویسندگان
چکیده
In this paper, we show an elegant inequality involving the ratio of generalized complete elliptic integrals of the first kind and generalize an interesting result of Alzer.
منابع مشابه
Some Bounds for the Complete Elliptic Integrals of the First and Second Kinds
In the article, the complete elliptic integrals of the first and second kinds are bounded by using the power series expansions of some functions, the celebrated Wallis inequality, and an integral inequality due to R. P. Agarwal, P. Cerone, S. S. Dragomir and F. Qi. Mathematics subject classification (2010): 26D15, 33C75, 33E05.
متن کاملA Stampacchia-type Inequality for a Fourth-order Elliptic Operator on Kähler Manifolds and Applications
In this paper we will prove an integral inequality of Stampacchia-type for a fourth-order elliptic operator on complete and connected Kähler manifolds. Our inequality implies a Hodge-Kodaira orthogonal decomposition for the Sobolev-type space W(X). In particular we will able to prove, under suitable topological conditions on the manifold X, the existence of an isomorphism between the Aeppli gro...
متن کاملSome new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives
In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملA Liouville Type Theorem for an Integral System
In this paper, we study a conjecture of J.Serrin and give a partial generalized result of the work of de Figueiredo and Felmer about Liouville type Theorem for non-negative solutions for an elliptic system. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017